3 resultados para ibuprofen

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, computational methods have been increasingly used to aid in the characterization of molecular biological systems, especially when they relevant to human health. Ibuprofen is a nonsteroidal antiinflammatory or broadband use in the clinic. Once in the bloodstream, most of ibuprofen is linked to human serum albumin, the major protein of blood plasma, decreasing its bioavailability and requiring larger doses to produce its antiinflamatory action. This study aimes to characterize, through the interaction energy, how is the binding of ibuprofen to albumin and to establish what are the main amino acids and molecular interactions involved in the process. For this purpouse, it was conducted an in silico study, by using quantum mechanical calculations based on Density Functional Theory (DFT), with Generalized Gradient approximation (GGA) to describe the effects of exchange and correlation. The interaction energy of each amino acid belonging to the binding site to the ligand was calculated the using the method of molecular fragmentation with conjugated caps (MFCC). Besides energy, we calculated the distances, types of molecular interactions and atomic groups involved. The theoretical models used were satisfactory and show a more accurate description when the dielectric constant ε = 40 was used. The findings corroborate the literature in which the Sudlow site I (I-FA3) is the primary binding site and the site I-FA6 as secondary site. However, it differs in identifying the most important amino acids, which by interaction energy, in order of decreasing energy, are: Arg410, Lys414, Ser 489, Leu453 and Tyr411 to the I-Site FA3 and Leu481, Ser480, Lys351, Val482 and Arg209 to the site I-FA6. The quantification of interaction energy and description of the most important amino acids opens new avenues for studies aiming at manipulating the structure of ibuprofen, in order to decrease its interaction with albumin, and consequently increase its distribution

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Derivatives of propionic acid NSAIDs are irreversible inhibitors of cyclooxygenase enzyme widely used. The aim of this study was to evaluate, through different experimental models, biological effects of derivatives of propionic acid (fenoprofen, naproxen, ibuprofen and ketoprofen) in cellular and molecular level. The labeling of blood constituents with technetium-99m (99mTc) and morphological analysis of erythrocytes of blood of rats, as well as growth, survival of cultures of Escherichia coli (E. coli) and the assessment of bacterial plasmid electrophoretic profiles were models used for experimental evaluation of possible biological effects of antiinflammatory drugs. The results show that, in general, anti-inflammatory drugs evaluated were not able to alter the labeling of blood constituents with 99mTc, the morphology of red blood cells from blood of rats, as well as the growth of cultures of E. coli and the electrophoretic profile of plasmid DNA. However, naproxen appears to cytotoxic effect on bacterial cultures, plasmids and genotoxic effects in reducing the action of stannous chloride in cultures of E. coli. The use of experimental fast performance and low cost was important for assessment of biological effects, contributing to a better understanding of the properties of propionic acid derivatives studied. anti-inflammatory, blood constituents, technetium-99m, stannous chloride, Escherichia coli; DNA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection of emerging interest microcontaminants in environmental samples of surface water, groundwater, drinking water, wastewater and effluents from water and sewage treatment plants (WTP and STP), in many countries, suggests these pollutants are widespread in the environment, mainly in urban areas. This is a reason for great concern, since many of these compounds are potentially harmful for humans other living beings, and they are not efficiently removed in the majority of WTP and STP, which is exacerbated by precariousness of water supply and sanitation services. In Natal, like other Brazilian cities, the sewage system serves only part of the urban area (about 30%), so that the rest of the wastewater is infiltrated in the sandy soil of the region in cesspool-dry well systems. This has resulted in contamination of groundwater in the area (sand-dune barrier aquifer, which supplies more than 50% of the city population), which has been observed by the increase in nitrate concentration in supply wells. The vulnerability of the sanddune barrier aquifer, combined with reports of the presence of emerging interest microcontaminants in Brazil and worldwide, led to this research, which investigated the occurrence of fifteen microcontaminants in Natal groundwater and sewage. Samples were collected at five wells used for water supply, the raw sewage and the effluents from biological reactors from STP (UASB and activated sludge reactors). Two samples of each sample were taken, with one week apart between the samples. To determine the contaminants, extraction of aquifer water, and raw and treated sewage samples were performed, through the technique of using SPE Strata X cartridge (Phenomenex®) to the aquifer water, and Strata SAX and Strata X (Phenomenex® ) for samples of raw and treated sewage. Subsequently the extracts were analyzed using GC-MS technique. Much of the analyzed microcontaminants were detected in groundwater and sewage. The concentrations in groundwater are generally lower than those found in the sewers. Some of the compounds (estrone, estradiol, bisphenol A, caffeine, diclofenac, naproxen, paracetamol and ibuprofen) are partially removed at STP.